Небольшой камень бросили с ровной горизонтальной поверхности земли под углом к горизонту. На какую максимальную...

Тематика Физика
Уровень 5 - 9 классы
физика кинематика движение тела угол броска максимальная высота горизонтальная скорость ускорение свободного падения
0

Небольшой камень бросили с ровной горизонтальной поверхности земли под углом к горизонту. На какую максимальную высоту поднимется камень, если ровно через 1 с после броска его скорость была направлена горизонтально? нужно решение

avatar
задан 23 дня назад

2 Ответа

0

Для решения данной задачи используем законы физики.

Из условия задачи следует, что через 1 с после броска скорость камня направлена горизонтально. Это означает, что вертикальная составляющая скорости камня в этот момент равна 0.

Кинематическое уравнение для вертикального движения камня имеет вид: h = v0t - (gt^2)/2,

где h - максимальная высота, на которую поднимется камень, v0 - начальная вертикальная составляющая скорости камня, t - время, прошедшее с момента броска, g - ускорение свободного падения (принимаем равным 9,8 м/с^2).

Так как через 1 с после броска вертикальная составляющая скорости камня равна 0, то v0 = gt = 9,8 м/с^2 * 1 с = 9,8 м/с.

Подставляем известные значения в формулу: h = 9,8 м/с 1 с - (9,8 м/с^2 (1 с)^2)/2 = 4,9 м.

Таким образом, максимальная высота, на которую поднимется камень, составляет 4,9 метра.

avatar
ответил 23 дня назад
0

Для решения этой задачи нужно применить основные законы кинематики и разобрать движение камня по вертикали и горизонтали.

  1. Разделение движения на составляющие:

    Камень бросили с поверхности земли под углом (\theta) к горизонту с начальной скоростью (v_0). Мы знаем, что через 1 секунду его скорость стала горизонтальной. Это означает, что вертикальная составляющая скорости через 1 секунду стала равной нулю.

  2. Вертикальная составляющая скорости:

    Вертикальная составляющая начальной скорости равна (v_{0y} = v_0 \sin(\theta)). Время, через которое вертикальная скорость станет нулевой, равно 1 секунде. Используя уравнение движения для вертикальной составляющей скорости:

    [ v{y} = v{0y} - gt ]

    Где (v_{y}) — вертикальная скорость в момент времени (t), (g = 9.8 \, \text{м/с}^2) — ускорение свободного падения. Подставим значения:

    [ 0 = v_0 \sin(\theta) - 9.8 \times 1 ]

    Отсюда:

    [ v_0 \sin(\theta) = 9.8 \, \text{м/с} ]

  3. Максимальная высота:

    Максимальная высота (H) достигается в тот момент, когда вертикальная скорость становится нулевой. Мы можем использовать уравнение для расчета максимальной высоты:

    [ H = \frac{v_{0y}^2}{2g} ]

    Заменим (v_{0y}) на (v_0 \sin(\theta)):

    [ H = \frac{(v_0 \sin(\theta))^2}{2g} = \frac{(9.8)^2}{2 \times 9.8} ]

    Упрощая:

    [ H = \frac{96.04}{19.6} = 4.9 \, \text{м} ]

Таким образом, максимальная высота, на которую поднимется камень, составляет 4.9 метров.

avatar
ответил 23 дня назад

Ваш ответ

Вопросы по теме