Координата движущегося тела меняется по закону x=2+3t. Определите начальную координату, величину скорости...

Тематика Физика
Уровень 10 - 11 классы
физика движение координата начальная координата скорость закон движения график расчет время уравнение движения
0

Координата движущегося тела меняется по закону x=2+3t. Определите начальную координату, величину скорости тела, вычислите координату через 5с после начала движения, постройте график x=x(t)

avatar
задан 21 день назад

3 Ответа

0

  1. Начальная координата: Для ( t = 0 ) ( x(0) = 2 + 3 \cdot 0 = 2 ). Начальная координата равна 2.

  2. Величина скорости: Скорость тела равна производной координаты по времени ( v = \frac{dx}{dt} = 3 ). Величина скорости постоянна и равна 3 м/с.

  3. Координата через 5 секунд: ( x(5) = 2 + 3 \cdot 5 = 2 + 15 = 17 ). Координата через 5 секунд равна 17.

  4. График ( x = x(t) ): Это прямая линия с угловым коэффициентом 3, пересекающая ось ( y ) в точке 2.

График можно представить следующим образом (в текстовом формате):

y
|
|            *
|          *
|        *
|      *
|    *
|  *
|*
|------------------ x

Здесь ось ( y ) соответствует координате ( x ), а ось ( x ) — времени ( t ).

avatar
ответил 21 день назад
0

Давайте рассмотрим уравнение движения данного тела, которое задано в виде:

[ x(t) = 2 + 3t ]

где ( x ) — координата тела, ( t ) — время, а числа 2 и 3 являются коэффициентами.

1. Начальная координата

Начальная координата тела определяется при ( t = 0 ):

[ x(0) = 2 + 3 \cdot 0 = 2 ]

Таким образом, начальная координата равна 2.

2. Величина скорости тела

Скорость тела определяется как производная координаты по времени. Найдем производную от уравнения координаты:

[ v(t) = \frac{dx}{dt} = \frac{d}{dt}(2 + 3t) = 3 ]

Это означает, что скорость тела постоянна и равна 3 единицам координаты в секунду.

3. Координата через 5 секунд после начала движения

Чтобы найти координату через 5 секунд, подставим ( t = 5 ) в уравнение движения:

[ x(5) = 2 + 3 \cdot 5 = 2 + 15 = 17 ]

Таким образом, координата через 5 секунд после начала движения равна 17.

4. Построение графика ( x(t) )

Уравнение ( x(t) = 2 + 3t ) представляет собой линейную зависимость, где:

  • ( y ) (или ( x )) — координата,
  • ( t ) — время.

График будет прямой линией с угловым коэффициентом 3 и пересечением с осью ( y ) в точке 2.

Для построения графика можно выбрать несколько значений времени ( t ) и вычислить соответствующие значения координаты ( x ):

  • ( t = 0 ): ( x(0) = 2 )
  • ( t = 1 ): ( x(1) = 2 + 3 \cdot 1 = 5 )
  • ( t = 2 ): ( x(2) = 2 + 3 \cdot 2 = 8 )
  • ( t = 3 ): ( x(3) = 2 + 3 \cdot 3 = 11 )
  • ( t = 4 ): ( x(4) = 2 + 3 \cdot 4 = 14 )
  • ( t = 5 ): ( x(5) = 2 + 3 \cdot 5 = 17 )

После этого можно нарисовать график, где по оси ( x ) откладываем время ( t ), а по оси ( y ) — координату ( x(t) ).

График будет выглядеть как прямая линия, поднимающаяся с углом наклона, равным 3, начиная от точки (0, 2) и проходя через указанные точки.

Итоговые результаты

  • Начальная координата: 2
  • Величина скорости: 3 м/с
  • Координата через 5 секунд: 17

Такой подход позволяет наглядно увидеть, как изменяется координата тела во времени и понять его движение.

avatar
ответил 21 день назад
0

Давайте разберем задачу по шагам.

  1. Дано уравнение движения тела: [ x = 2 + 3t, ] где ( x ) — координата тела в метрах, ( t ) — время в секундах.

  2. Начальная координата: Начальную координату тела можно найти, подставив ( t = 0 ) в уравнение движения: [ x(0) = 2 + 3 \cdot 0 = 2 \, \text{м}. ] Таким образом, начальная координата тела равна ( 2 \, \text{м} ).

  3. Скорость тела: Уравнение движения ( x = 2 + 3t ) — линейное, что означает, что движение является равномерным. В таком случае скорость тела равна коэффициенту перед ( t ) в уравнении: [ v = 3 \, \text{м/с}. ] Это постоянная скорость, так как движение равномерное.

  4. Координата через 5 секунд: Чтобы найти координату тела через 5 секунд, подставим ( t = 5 ) в уравнение: [ x(5) = 2 + 3 \cdot 5 = 2 + 15 = 17 \, \text{м}. ] Таким образом, через 5 секунд тело будет находиться в точке с координатой ( x = 17 \, \text{м} ).

  5. График зависимости ( x = x(t) ): Уравнение ( x = 2 + 3t ) описывает линейную зависимость. График представляет собой прямую линию, проходящую через точку ( (t = 0, x = 2) ) с угловым коэффициентом ( 3 ). Угловой коэффициент ( 3 ) означает, что за каждую секунду координата тела увеличивается на ( 3 \, \text{м} ).

    Таблица значений для построения графика:

    ( t ), c( x ), м
    02
    15
    28
    311
    414
    517

    На графике:

    • Ось ( t ) (время) откладывается по горизонтали.
    • Ось ( x ) (координата) откладывается по вертикали.
    • Начальная точка графика: ( (0, 2) ).
    • Прямая поднимается с угловым коэффициентом ( 3 ), то есть на каждые 1 секунду (по оси ( t )) координата ( x ) увеличивается на ( 3 \, \text{м} ).
  6. Вывод:

    • Начальная координата: ( 2 \, \text{м} ).
    • Скорость тела: ( 3 \, \text{м/с} ).
    • Координата через 5 секунд: ( 17 \, \text{м} ).
    • График — это прямая линия, начинающаяся в точке ( (0, 2) ) и возрастающая с угловым коэффициентом ( 3 ).

avatar
ответил 21 день назад

Ваш ответ

Вопросы по теме